Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Main subject
Language
Document Type
Year range
2.
Front Immunol ; 14: 1101808, 2023.
Article in English | MEDLINE | ID: covidwho-2241807

ABSTRACT

Introduction: Despite of massive endeavors to characterize inflammation in COVID-19 patients, the core network of inflammatory mediators responsible for severe pneumonia stillremain remains elusive. Methods: Here, we performed quantitative and kinetic analysis of 191 inflammatory factors in 955 plasma samples from 80 normal controls (sample n = 80) and 347 confirmed COVID-19 pneumonia patients (sample n = 875), including 8 deceased patients. Results: Differential expression analysis showed that 76% of plasmaproteins (145 factors) were upregulated in severe COVID-19 patients comparedwith moderate patients, confirming overt inflammatory responses in severe COVID-19 pneumonia patients. Global correlation analysis of the plasma factorsrevealed two core inflammatory modules, core I and II, comprising mainly myeloid cell and lymphoid cell compartments, respectively, with enhanced impact in a severity-dependent manner. We observed elevated IFNA1 and suppressed IL12p40, presenting a robust inverse correlation in severe patients, which was strongly associated with persistent hyperinflammation in 8.3% of moderate pneumonia patients and 59.4% of severe patients. Discussion: Aberrant persistence of pulmonary and systemic inflammation might be associated with long COVID-19 sequelae. Our comprehensive analysis of inflammatory mediators in plasmarevealed the complexity of pneumonic inflammation in COVID-19 patients anddefined critical modules responsible for severe pneumonic progression.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Kinetics , Post-Acute COVID-19 Syndrome , Inflammation , Inflammation Mediators , Interferon-alpha
3.
BMB Rep ; 55(9): 465-471, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1998890

ABSTRACT

Understanding and monitoring virus-mediated infections has gained importance since the global outbreak of the coronavirus disease 2019 (COVID-19) pandemic. Studies of high-throughput omics-based immune profiling of COVID-19 patients can help manage the current pandemic and future virus-mediated pandemics. Although COVID-19 is being studied since past 2 years, detailed mechanisms of the initial induction of dynamic immune responses or the molecular mechanisms that characterize disease progression remains unclear. This study involved comprehensively collected biospecimens and longitudinal multi-omics data of 300 COVID-19 patients and 120 healthy controls, including whole genome sequencing (WGS), single-cell RNA sequencing combined with T cell receptor (TCR) and B cell receptor (BCR) sequencing (scRNA(+scTCR/BCR)-seq), bulk BCR and TCR sequencing (bulk TCR/BCR-seq), and cytokine profiling. Clinical data were also collected from hospitalized COVID-19 patients, and HLA typing, laboratory characteristics, and COVID-19 viral genome sequencing were performed during the initial diagnosis. The entire set of biospecimens and multi-omics data generated in this project can be accessed by researchers from the National Biobank of Korea with prior approval. This distribution of largescale multi-omics data of COVID-19 patients can facilitate the understanding of biological crosstalk involved in COVID-19 infection and contribute to the development of potential methodologies for its diagnosis and treatment. [BMB Reports 2022; 55(9): 465-471].


Subject(s)
COVID-19 , Cytokines , Humans , Pandemics , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, T-Cell/genetics
4.
One Earth ; 3(5): 574-589, 2020 Nov 20.
Article in English | MEDLINE | ID: covidwho-1144885

ABSTRACT

Air-filtering masks, also known as respirators, protect wearers from inhaling fine particulate matter (PM2.5) in polluted air, as well as airborne pathogens during a pandemic, such as the ongoing COVID-19 pandemic. Fibrous medium, used as the filtration layer, is the most essential component of an air-filtering mask. This article presents an overview of the development of fibrous media for air filtration. We first synthesize the literature on several key factors that affect the filtration performance of fibrous media. We then concentrate on two major techniques for fabricating fibrous media, namely, meltblown and electrospinning. In addition, we underscore the importance of electret filters by reviewing various methods for imparting electrostatic charge on fibrous media. Finally, this article concludes with a perspective on the emerging research opportunities amid the COVID-19 crisis.

SELECTION OF CITATIONS
SEARCH DETAIL